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Abstract

A greedy embedding of an unweighted undirected graph G = (V, E) into a metric space
(X, ρ) is a function f : V → X such that for every source-sink pair of different vertices
s, t ∈ V it is the case that s has a neighbor v in G with ρ(f(v), f(t)) < ρ(f(s), f(t)).

Finding greedy embeddings of connectivity graphs helps to build distributed routing
schemes with compact routing tables. In this paper we take a refined look at greedy
embeddings, previously addressed in [1, 2], by examining their description complexity
as a key parameter in conjunction with their dimensionality. We give arguments show-
ing that the dimensionality lower-bounds for monotone maps do not extend to greedy
embeddings. We prove a unified O(log n) lower-bound on the dimension of no-stretch
greedy embeddings when the host metric is Euclidean or Lobachevsky geometry. The
essence of the lower bound entails showing that low-dimensional spaces lack the topolog-
ical capacity to realize the embeddings of certain graphs with “hard crossroads.” This
technique might be of independent interest. We develop new methods for building con-
cise embeddings of trees (and some other graphs) in 3-dimensional Lobachevsky spaces
using recursive applications of hyperbolic isometries guided by caterpillar-like decom-
positions. Our embeddings improve over prior work [1] by achieving O(κ(T ) · log n)
description complexity, where κ(T ) is the caterpillar dimension. We further demon-
strate concise O(log n)-dimensional greedy embeddings of trees into Euclidean space
using techniques inspired by [3], thereby strengthening our belief and intuition that all
graphs can be embedded with no stretch in `

O(log n)
2 .

∗PhD candidate.





1. Introduction

A greedy embedding of an unweighted undirected graph G = (V, E) into a metric space (X, ρ) is
a function f : V → X such that for every source-sink pair of different vertices s, t ∈ V it is the case
that s has a neighbor v in G with ρ(f(v), f(t)) < ρ(f(s), f(t)). From here on n = |V | and the word
“embedding” will refer to a greedy one unless otherwise stated. This definition implies that routing
greedily (with respect to the host metric) in G always succeeds. In particular, a routing algorithm
induced by a given greedy embedding works as follows. To deliver a letter from s ∈ V to t∗ ∈ X, the
algorithm recursively forwards the letter to a neighbor of minimal embedding distance to t∗ (ties
are broken arbitrarily in a deterministic manner which is universally fixed for the purposes of our
discussion), provided that such neighbor is closer to t∗ than the current vertex. Otherwise, routing
halts and it is assumed that the target has been reached. If the embedding is greedy and t∗ = f(t)
for some t ∈ V , then the letter is guaranteed to reach t.

The notion of a greedy embedding is motivated by its applications to routing-with-local-
information in large distributed systems (discussed in more detail later). In this context one is
particularly concerned with three properties of the embedding algorithm. From here on we will
loosely use the term embedding to refer to f itself or to the algorithm that finds an embedding for
a given input graph.

i. For a given embedding algorithm, the maximum (over v ∈ G) number of bits that the algorithm
uses to describe f(v) is called the description complexity of the embedding (algorithm). Note
that in a typical application, the computer at node v stores its own coordinate f(v) in order
to be able to perform routing tasks. Embeddings with Ω(n) description complexity are not
interesting in light of application constraints. Our primary interest is in embeddings with
polylog(n) description complexity, heretofore referred to as concise embeddings.

ii. Every embedding f defines a unique path in G between all pairs of unequal vertices (s, t), which
is the path realized by the greedy routing algorithm (when routing from s to f(t) and vice-versa)
with respect to f (after resolving ties deterministically, as noted above). The length of this
path is denoted by df (s, t), which is to be distinguished from the length of the shortest-path
between s and t in G denoted by dG(s, t). With this notation in hand, the stretch of a greedy
embedding is defined as D = maxs6=t∈V

df (s,t)
dG(s,t) . An embedding with stretch D = 1 is called a

no-stretch embedding. Note that no-stretch greedy embeddings are not equivalent to no-stretch
distance-preserving embeddings. (Examples are given below.)

iii. The congestion of a greedy embedding is defined as the edge-congestion of the set of routes
realized by greedy routing (with respect to the embedding) between all pairs of vertices.

1.1. History of the problem

The power of geometric interpretation for routing problems was initially recognized in a sequence
of papers [4, 5, 6, 7] from the ad-hoc, wireless and sensor networks communities. These papers
consider the problem of routing messages in ad-hoc wireless networks where participating nodes are
aware of their physical planar location on Earth; and, additionally, the connectivity graph (induced
by the nature of radio communications) is close to planar. The papers describe routing algorithms
that make local forwarding decisions based on the geographic location of the target node and the
current node’s neighbors. The algorithms have a common framework. First, a planarization of
the connectivity graph is obtained; consequently, routing consists of greedy approach towards the
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target, combined with face routing around the perimeter of obstacles (when greedy approach is not
possible).

Routing with geographic location, however, has unsurmountable shortcomings. In particular, [7]
shows that the best possible routing algorithm (based only on geographic location) may result in
routing costs that are quadratic in the size of the optimal ones. This negative result is due to
the arbitrary geometric complexity that the obstacles can have. Two other shortcomings are the
assumption that the connectivity graphs are close to planar and that geographic location information
is available. These two assumptions render the routing schemes under consideration useless for more
complex networks like the Internet or P2P networks, where the connectivity graphs are significantly
more complex: Such graphs are often modeled by scale-free or preferential-attachment random
graphs [8, 9].

In light of these shortcomings, the non-strictly-theoretical approaches of [10, 11, 12] consider
assigning virtual coordinates in Rd to network nodes, so that basic greedy routing works with
little modification. The assignment methods investigated entail variants of the rubber-band algo-
rithm (applied to the connectivity graphs) and multi-dimensional scaling techniques (applied to
the shortest-path metric of the connectivity graphs). The experimental results of these papers are
generally promising but far from perfect or well-understood for large and realistic classes of graphs.

The first rigorously theoretic attempt at the problem was made by Papadimitriou et al. in [2],
where the notion of greedy embedding was defined. This paper concerns the question of mere
existence of greedy embeddings for graphs (irrespective of stretch or congestion). The paper shows
that any graph containing a 3-connected planar subgraph has a greedy embedding in R3, and
conjectures that every such graph has a greedy embedding in R2 as well. This conjecture was
proven correct for graphs containing a triangulated planar subgraph [13].

Following the work of [2], and perhaps motivated by the application of greedy embeddings,
Kleinberg [1] asks the more general question: Are there (nice) host metric spaces that accommodate
greedy embeddings of all connected graphs?. He answers this question affirmatively using the fact
that a greedy embedding of a graph spanning tree is also a greedy embedding of the graph (albeit
with possibly arbitrary stretch), and showing that all trees can be embedded (not concisely) into
H2, the 2-dimensional Lobachevsky space. Additionally, his paper highlights the importance of the
stretch and congestion parameters of greedy embeddings in view of applications. For embeddings
of star graphs on n vertices into Rd endowed with a Minkowski norm, it is shown that d = Ω(log n).
Kleinberg concludes his work with a list of open problems regarding existential and algorithmic
aspects of greedy embeddings with various levels of stretch.

1.2. Our results

This work is a continuation of the study of greedy embeddings. The primary theme in our paper
is addressing the existence of no-stretch embeddings for all graphs. Our findings provide evidence
that such embeddings may exist. Our emphasis on finding embeddings with no stretch is in line
with the fact that in real-world routing applications even small amounts of stretch are prohibitive.

First, in the spirit of keeping the applications in mind, we address the bit complexity of greedy
embeddings (defined above). We improve Kleinberg’s result by showing that all trees (as well as
some other tree-like graphs) have concise (also defined above) greedy embeddings into H3, the 3-
dimensional Lobachevsky space. We complement this result by exhibiting concise low-dimensional
greedy embeddings of trees into `2. The latter construction sheds some light on the “shape” of
possible greedy embeddings of general graphs in Euclidean spaces.
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Second, we give arguments and a theorem that strongly suggest that no-stretch embeddings do
not require high dimension and, in fact, we believe that all connected graphs have concise no-
stretch low-dimensional embeddings in `2. Therefore, we begin a systematic attempt to understand
the structure of no-stretch embeddings. As a first step, we develop a unified technique with a strong
topological flavor that demonstrates that a certain family of graphs with “hard crossroads” requires
Ω(log n) dimensions to embed into Lobachevsky or Euclidean space. This technique motivates an
interesting topological question regarding Minkowski normed spaces and manifolds. Our lower-
bound can be interpreted as saying that Lobachevsky geometry is no more powerful than Euclidean
geometry when it comes to harder graphs, contrary to intuition. We complement this lower-bound
with a theorem stating that every no-stretch greedy embedding into `d

2 can be used to derive a
corresponding embedding into Hd+1.

This paper is not concerned with congestion since we believe that this parameter is of secondary
importance. This belief is supported by the fact that standard techniques like using a distribu-
tion over embeddings or routing through randomly selected intermediaries can be used to reduce
congestion.

The paper is organized as follows. Section 2 positions our work with respect to the related class
of ordinal and proximity embeddings. Section 3 discusses the preliminaries of hyperbolic geometry,
greedy embeddings, and tree decompositions. Section 4 proves a lower-bound on embedding dimen-
sion for a family of graphs with rich combinatorial structure. Sections 5 and 6 explain our concise
embeddings for trees in Lobachevsky and Euclidean space, respectively. Finally, Section 7 contains
concluding remarks and open problems motivated by our work.

2. Related work

Greedy embeddings are a type of ordinal embeddings, i.e. embeddings that preserve the relative
order of pairwise vertex distances. The latter have enjoyed significant attention in the multi-
dimensional scaling community in view of their applications to visualization, compression, nearest-
neighbor search, etc. (see [14] for details). The strictest kind of ordinal embeddings are monotone
maps, which are discussed below. Monotone maps provably require Ω(n) dimensions to realize
almost all distance orders on n-point metrics (see [15]). To address this problem [14] considers ordi-
nal embeddings of minimum relaxation, a variant that enforces order preservation of well-separated
points only. In this vein, greedy embeddings are a variant of ordinal embeddings that require or-
der preservation only among pairs of points of the form (x, z) and (y, z) where x and y must be
neighbors or share a neighbor in the original graph.

In [15] Linial and Bilu study embeddings that preserve relative pairwise distances. They de-
fine a monotone map as function f : X → Y mapping a finite metric (X, dX) into a (usually
normed or otherwise nice) host metric (Y, dY ) such that ∀ a, b, c, d ∈ X : dX(a, b) < dX(c, d) ⇔
dY (f(a), f(b)) < dY (f(c), f(d)). They show that any ordering on

(
[n]
2

)
can be realized as a metric

on n points with a matching ordering on the pairwise distances. Furthermore, they show that any
such metric can be embedded in `n

2 and almost no such metrics can be embedded in `
o(n)
2 .

We prove a theorem showing that the relationship between monotone maps and greedy embed-
dings is weak at best. The proof of the following theorem is deferred to the full version:

Definition 2.1. A reduction of the problem of finding a monotone map for a given order π ∈ S(n
2)

on the pairwise distances between n points, is a function R from S(n
2)

to the set of unweighted
undirected graphs. Additionally, there is a subset of vertices H ⊆ V (R(π)) such that |H| = n and
for every no-stretch greedy embedding f of R(π) the restriction to H of f is a monotone map for π.
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Theorem 2.1. The problem of finding a monotone map for a given order on the pairwise distances
between n points cannot be reduced to a problem of finding a no-stretch greedy embedding of a graph
on o(en) vertices for 1− o(1) fraction of orders.

It is obvious that a monotone map for a graph metric is also a greedy embedding for this metric.
On the other hand, there is an abundance of examples where the greedy embedding of a graph
metric is not necessarily a monotone map. Perhaps the best such example is that of Kn,n. The
complete bipartite graph Kn,n has no monotone map into `

o(n)
2 while it has a no-stretch greedy

embedding into `2
2: Position all vertices of Kn,n uniformly along the unit circle S1 while interlacing

vertices from opposite sides of Kn,n. The techniques used in [15] to derive the Ω(n) bound on the
monotone dimension of most graphs were borrowed from [16] and these techniques produce only
trivial lower-bounds for the greedy embedding dimension.

Another related notion is that of a proximity embedding defined in [17]. A proximity embedding
f : G → `d

2 of an undirected unweighted graph G is one for which ∀v, w ∈ G : ‖f(v) − f(w)‖ <
1 ⇔ (v, w) ∈ G. The sphericity of a graph is the minimum dimension d for which such embedding
exists. As pointed out in [15], the sphericity of a graph is a lower-bound on its minimum monotone
map dimension. Sphericity also bears only a weak connection to greedy embeddings. On the one
hand, Kn,n has sphericity Ω(n) while it embeds greedily into `2

2 with no stretch. On the other hand,
trees and graphs of bounded degree have easy proximity embeddings in `

O(log n)
2 using standard

constructions involving the Johnson-Lindenstrauss lemma and only local graph structure consider-
ations (see [18]). In contrast, Appendix A proves that standard techniques based on flattening or
Bourgain’s embedding cannot be used to construct greedy embeddings.

3. Preliminaries

3.1. Hyperbolic geometry

Hyperbolic geometry is a vast and complex area with applications in various branches of Mathe-
matics. In this section we give a brief and somewhat self-sufficient introduction to the properties of
hyperbolic spaces used in this paper. More comprehensive expositions can be found in the classical
texts of Thurston [19] and Do Carmo [20]. A considerably more concise and self-contained intro-
duction is the one by Katok [21], which we recommend for the beginner. Hyperbolic geometry has
found little attention in Computer Science, but for a few notable exceptions [22, 1, 23].

Hyperbolic spaces, also known as Lobachevsky spaces (not to be confused with the more gen-
eral Gromov δ-hyperbolic spaces [24, 25]; of course, Lobachevsky spaces are also Gromov log 3-
hyperbolic), can be constructed either axiomatically [26] (much like classical Euclidean geometry)
or more explicitly using the language of Differential Geometry [20]. For the benefit of the reader’s
intuition we give the latter construction. We then state a few simple facts (while omitting proofs)
which will enable us to reason about hyperbolic geometry in terms of its model via the more familiar
Euclidean space.

3.1.1. The half-plane model

The d-dimensional real hyperbolic space, denoted Hd, is modeled by the upper-half plane
Rd+ = {(x1, . . . , xd)T ∈ Rd |xd > 0} in Rd endowed with the Riemannian metric:

ds2 =
dx2

1 + · · ·+ dx2
d

x2
d
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By construction Hd is geodesic. The Euclidean hyperplane ∂Hd = {(x1, . . . , xd)T ∈ Rd |xd = 0}
plays a special role and is called the boundary at infinity. The following few facts establish the basic
properties of Hd.

Theorem 3.1 (See Proposition 3.1 in [20]). Infinite geodesics, also called lines, in Hd (i.e. isometric
maps of the form g : R ↪→ Hd) correspond to Euclidean circles and lines orthogonal to the boundary
at infinity and restricted to the upper half-plane, collectively referred to as generalized circles.

Fact 3.1 (See [20] p.177). Hyperplanes in Hd (i.e. isometric maps h : Hd−1 ↪→ Hd) correspond
to (d − 1)-dimensional Euclidean spheres and planes orthogonal to the boundary at infinity and
restricted to the upper half-plane, collectively called generalized spheres.

The isometries of Hd are modeled by conformal (unoriented-angle preserving) transformations of
Rd that map the upper half-plane to itself, restricted to the upper half-plane. More notably though:

Theorem 3.2 (See Theorem 5.2 and Theorem 5.3 in [20]). Let f : Hd → Hd be an isometry. Then,
f is the restriction to Rd+ of a composition of Euclidean isometries, dilations or inversions that
map Rd+ onto itself, at most one of each.

We assume that the reader is already familiar with the isometries and dilations of Rd+. An inver-
sion about a Euclidean hyperplane is defined as Euclidean reflection with respect to that hyperplane.
An inversion of a point p about a Euclidean hypersphere centered at c with radius r is defined as
the unique point q on the ray −→cp for which |cp| · |cq| = r2. For convenience, we define shorthand
notation for the Euclidean hemisphere Sc,r = {u ∈ Rd+ : ‖u − c‖ = r} and the corresponding
half-ball Bc,r = {u ∈ Rd+ | ‖u− c‖ < r}, where in both cases c ∈ ∂Hd.

In this paper we use three specific isometries to construct greedy embeddings. Since we need to
keep track of the bit complexity of point coordinates after application of isometric transformations,
we give explicit formulas for them here:

• An inversion about a hyperbolic hyperplane corresponding to a Euclidean hemisphere Sc,r is
given by αc,r(v) = (v − c) · r2/‖v − c‖2 − c

• A translation by a vector w ∈ ∂Hd is given by βw(v) = v + w

• A dilation at the origin by a factor D > 0 is given by γD(v) = D · v

Finally, we will need an expression for the pairwise distance function of Hd. We will denote the
geodesic segment between points v and w in Hd by [v, w]. The Riemannian metric on Hd naturally
induces a pairwise metric function ρ(·, ·). Let ~ = {x ∈ Rd |x2 = · · · = xd−1 = 0, xd > 0}. We
give an expression for ρ(v, w) for the case when v, w ∈ Hd ∩ ~. (It should be clear that hyperbolic
isometries can position any two points in this manner.) ~ can be viewed as a copy of H2, and v
and w can be located in ~ using only two coordinates, namely the 1-st and the d-th. We shall now
view v and w as complex numbers in the following way v = v1 + ivd (similarly for w). With this
notation in hand, the following theorem gives the pairwise distance between v and w:

Theorem 3.3 (See Theorem 1.2.6 in [21]). Let v, w ∈ H2, then:

ρ(v, w) = ln
|v − w|+ |v − w|
|v − w| − |v − w|
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3.1.2. The Klein model

The Klein model of hyperbolic space will be instrumental in our lower-bound proof. In the Klein
model Hd is modeled by the d-dimensional Euclidean disc Dd = {x ∈ Rd | ‖x‖ < 1}. In particular,
the Klein model can be viewed as a homeomorphism h : Hd → Dd. We shall make use of one simple
property of this model; for further information, we refer the interested reader to [19]:

Fact 3.2. Hyperbolic hyperplanes in the Klein model correspond to Euclidean hyperplanes re-
stricted to the unit disc.

3.1.3. Bisecting hyperplanes

To prove correctness of our constructions, we will use a lemma from [1] forH2 whose proof translates
to Hd unchanged:

Lemma 3.1. Let v and w be different points in Hd, and let b be the hyperbolic hyperplane that
bisects the geodesic [v, w], then for all u ∈ Hd it holds that ρ(v, u) < ρ(w, u) if and only if v and u
are in the same half-space with respect to b .

In order to apply this lemma in our constructions, we will need to identify the bisecting hyperplane
between vertices with equal d-th coordinates:

Lemma 3.2. Let u, v ∈ Hd such that ud = vd. Then the hyperbolic hyperplane bisecting [u, v]
coincides with the Euclidean hyperplane bisecting u and v (in Euclidean sense).

3.2. Distance-preserving embeddings

Definition 3.1. A map f : X → Y , where (X, dX) and (Y, dY ) are metric spaces, is a distance-
preserving embedding of X into Y with distortion D > 0, if there exists a constant r > 0 such
that:

∀ v, w ∈ X r · dX(v, w) ≤ dY (f(v), f(w)) ≤ D · r · dX(v, w)

3.3. Tree decomposition and heavy paths

This section describes a variant of the well-known caterpillar decomposition of trees [27, 28], also
recognized as Tarjan and Harel’s [29] heavy-path decomposition. Let T be an arbitrary unrooted
tree on n vertices. A path decomposition of T into k paths is a collection of vertex-disjoint line
subgraphs of T which covers T ’s vertices completely, i.e. T = P1 ] · · · ] Pk. A hierarchical path
decomposition is a path decomposition which is additionally endowed with a hierarchical relationship
among the paths. In particular, this relationship is represented by a rooted tree H whose vertex
set is P1, . . . , Pk. Furthermore, (Pi, Pj) is an edge in H iff Pi and Pj are connected by an edge
in T . A heavy-path decomposition of a (rooted/unrooted) tree is a particular hierarchical path
decomposition which has depth at most 2κ(T ) ≤ 2 log L, where L is the number of leaves of T . The
quantity κ(T ) is the caterpillar dimension of T . It is easily verified that for an unrooted tree T ,
a caterpillar decomposition of T using an arbitrary root can be modified to produce a heavy-path
decomposition of depth at most 2κ(T ). A heavy-path decomposition of a bounded degree-3 tree is
illustrated in Figure 1.
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4. The unified lower bound

In this section we develop a “dual” representation of greedy embeddings in terms of “bisecting
sets,” which allows us to prove a unified lower bound on the Euclidean and Lobachevsky dimen-
sionality of a certain family of graphs. The Lobachevsky bound is new, while the Euclidean was
already known from [1]. Nevertheless, the unified framework of the proof seems to be of value.

We now define a family of graphs with hard crossroads that have rich combinatorial structure on
the set of all-pairs shortest paths. Let Qd be the graph on n = d+3 ·2d vertices and m = 2d · (d+2)
edges, defined as follows. The vertex set consists of {si}i∈[2d], {tj}j∈[d], {wi,q}i∈[2d],q∈{0,1}. The edge
set consist of two types of edges:

i. For every i ∈ [2d], include the edges (si, wi,0) and (si, wi,1).

ii. Let i = b1b2 · · · bd be the binary representation of i. Then for every i ∈ [2d], include the edges
(wi,b1 , t1), (wi,b2 , t2), . . . , (wi,bd

, td).

The main result of this section is the following theorem:

Theorem 4.1. Every no-stretch greedy embedding of Qd into Euclidean or Lobachevsky space re-
quires d dimensions.

This theorem implies a log(n) lower bound on the dimension of no-stretch greedy embeddings of
graphs on n vertices.

Sketch of Proof: (See Appendix B for complete proof.) Let f : Qd → (X, dX) be an embedding
into a geodesic metric space with a continuous pairwise distance metric. We shall use v and f(v)
interchangeably. Let us now cover some topological preliminaries.

Let a 6= b ∈ X be two different points in X. Define the bisecting set of [a, b] to be Bisect(a, b) =
{c ∈ X | dX(c, a) = dX(c, b)}. In the spaces under consideration, every bisecting set is non-trivial
and furthermore it separates the space X in at least two disjoint sets, called chambers, one for
each endpoint of the bisected geodesic segment. We use the notation (c a|b d) to indicate that c
(respectively d) lies in the chamber of a (respectively b) with respect to the bisecting set of [a, b].
We also use that chambers are preserved by homeomorphisms. More generally, let S ⊂ X separate
X into a collection of chambers {Cα}α and let h : X → Y be a homeomorphism, then h(S) separates
Y exactly into {h(Cα)}α.

It is easily seen that the correctness of f (as a no-stretch greedy embedding) can be expressed by
a set of inequalities of the form dX(f(x), f(z)) < dX(f(y), f(z)) where x, y, z ∈ V (Qd). Every such
inequality implies a (weaker) separation constraint (z x|y ). The collection of separation constraints
partitions X into a set of chambers and establishes combinatorial constraints regarding the position
of f(x), for every x ∈ V (Qd), with respect to containment in chambers.

The idea of the proof is to find a homeomorphism h that sends X to Rd while mapping all
bisecting sets (or at least subsets thereof) to hyperplanes. Then using Linear Algebra we establish
that the required (by the separation constraints) geometric set system (See [30] for definition),
formed by the points

{
(h ◦ f)(x)

}
x∈V (Qd)

and the hyperplanes
{
h(Bisect(f(x), f(y)))

}
x 6=y∈V (Qd)

,
cannot be realized in low dimensions.

When X is Lobachevsky, the bisecting sets are hyperbolic hyperplanes, and the Klein model is
the required homeomorphism. When X is Euclidean the homeomorphism is simply the identity. z
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It is an interesting (as far as we know open) question to find homeomorphisms that work for
Minkowski normed spaces. Some thought will convince the reader that such homeomorphisms will
have to be input-specific, unlike the universal Klein model homeomorphism for the Lobachevsky
case. We also believe that this approach can be extended to nice classes of manifolds (but we do
not dabble in this here).

The following theorem (whose proof is sketched in Appendix C) complements our lower-bound
result:

Theorem 4.2. If a graph G has a no-stretch greedy embedding into `d
2, then it has a no-stretch

greedy embedding into Hd+1.

5. Concise Hyperbolic Embeddings of Trees

Theorem 5.1. Every tree T on n vertices has a concise greedy embedding in H3 with O(κ(T )·log n)-
bit vertex coordinates.

Proof of Theorem: It is sufficient to exhibit embeddings for bounded degree-3 trees. This follows
from the fact that if T ∗ ⊇ T is a super-tree, then every greedy embedding of T ∗ restricts to a greedy
embedding of T , and the fact that every tree T on n vertices is found as a subtree of a ternary tree
of size no larger than 2n.

We begin by obtaining a heavy-path decomposition T = P1 ] · · · ] Pk with a hierarchical rela-
tionship on the Pj ’s represented by a tree H (as in Section 3.3 and Figure 1).

Some notation is due now. Let Pj be a path in T , viewed as a vertex in H, and let parent(Pj) de-
note its parent path in H (if it exists). Denote by apex(Pj) be the unique vertex in parent(Pj) that Pj

connects to, and by exit(Pj) the unique vertex in Pj that connects to apex(Pj). Let subtree(apex(Pj))
denote the subtree of T consisting of Pj , all of its descendants in H, as well as apex(Pj). For a
vertex v in Pj that is not the apex of any Pi we will let subtree(v) denote the singleton subtree of
T consisting of v itself.

A canonical embedding fv : subtree(v) → H3 of subtree(v), where v ∈ T , is one for which all
relevant vertices are embedded in the interior of B(0,0)T ,1, and v is embedded at the unique location
inside the ray ez such that ρ(fv(v), S(0,0)T ,1) = α, where α is any fixed positive real number for
which eα ∈ Q. (Later we will see that we can also use α = 1.) We will describe a recursive (on H)
procedure that canonically embeds each subtree(v) until all of T is embedded.

In the base case, canonically embedding a single vertex v is trivial. We simply embed v at the
unique point on the ray ez that has hyperbolic distance to S(0,0)T ,1 equal to α and is “inside”
S(0,0)T ,1 (i.e. on the same side as the origin). Explicitly fv(v) = (0, 0, 1/eα)T . The bit complexity
of this embedding is O(1) due to our choice of α. We should note however that since the rest of
the embedding will be obtained via isometric transformations, we can view the quantity 1/eα as an
irreducible (or free) variable and describe all coordinates as polynomials over it. Either approach
works.

Let us now proceed to the recursive step of embedding w where w = apex(Pj) for some Pj

consisting of vertices v1, . . . , vk. And let exit(Pj) = vq for some q ∈ [k]. From the recursion, we
have embeddings fv1 , . . . , fvk

with fvi : subtree(vi) → B(0,0)T ,1. We shall first define an embedding
gw : subtree(w) → H3 which is not canonical. Later we will transform gw into a canonical one:

gw(u) =

{(
β(i−q,0)T ◦ fvi

)
(u), if u ∈ subtree(vi)

(0, 1, 1/eα)T , otherwise, i.e. if u = w
(5.1)
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The embedding gw(u) is illustrated in Figure 2. Our first order of business will be to check that
it is correct. Afterwards we will apply the necessary isometric transformations to reshape it into
canonical form. Notice that isometric transformations do not violate correctness.

To check correctness (i.e. that greedy routing works), we have to identify a subregion R ⊂ H3

where we plan to position the rest of T , i.e. T\subtree(w), later in the recursion. We will let
R = B(0,1)T ,1/e2α . Note that R is intentionally chosen so that ρ(gw(w), R) = α.

The inductive (as in recursive) hypothesis is that all points in subtree(vi) for i ∈ [k] are embedded
in such a way (by fvi) that (a) greedy routing works among themselves, and (b) if routing is
attempted to any location outside of B(0,0)T ,1, it will reach vi. Therefore our task is to check that
under gw:

i. Routing from any vi to u ∈ subtree(vj) reaches destination, and

ii. Routing from any vi to w or any location inside R reaches destination.

To prove the first part, it is sufficient to show that routing to u ∈ subtree(vj) reaches at least vj ,
then by inductive hypothesis we know that u will be reached under fvj (translated by β(i−q,0)T ).
Assume without loss of generality that i < j. Indeed, since gw(vi) and gw(vi+1) have the same z
coordinate, their bisecting hyperplane separates gw(vi) from all points gw(u) where u ∈ subtree(vj).
Therefore routing will progress to vi+1. The second assertion is also easy to check. In particular,
one simply verifies that at a vertex vi the bisecting plane of the edge that leads to w separates
vi from w and all of R. This is illustrated in Figure 2 where bisecting hyperbolic hyperplanes are
pictured as dotted lines.

The canonical embedding fw is obtained from gw by:

i. Applying a spherical hyperbolic inversion with respect to R. (This transformation takes all of
gw and “squeezes” it inside R.)

ii. Translating R to R′ so that R′ is centered at the origin

iii. Isometrically expanding R′ to R′′ = S(0,0)T ,1

Formally, fw =
(
γe2α

) ◦ (
β(0,−1)T

) ◦ (
α(0,1)T ,1/e2α

) ◦ (
gw

)
.

To calculate the bit-description complexity per vertex, we will trace out what happens to a
vertex’s coordinates throughout the recursion. At the lowest level of the recursion, a vertex starts
off with O(1)-bit coordinates (namely (0, 0, 1/eα)T ). At each level of the recursion, the vertex is
translated by at most n positions along the x axis. This step adds at most O(log n) bits to its x-
coordinate. Observe that the canonization step is a fixed isometric transformation, so it contributes
O(1) additional bits. There are κ(T ) recursive levels, amounting to a total of O(κ(T ) · log n) bits
per vertex coordinate. z

We will briefly note (without proof) that since Hd is Gromov (log 3)-hyperbolic (for every d ≥ 2),
if we scale our embedding procedure so that the hyperbolic distance between vertices sharing an
edge is ∆, then the greedy embedding is also a distance-preserving embedding (in the sense of
Definition 3.1) with distortion 1 + log 3/∆.

The techniques described in this section can be used to embed slightly more general classes of
graphs. In particular, let G be a graph that can be decomposed into a vertex-disjoint family of
subgraphs, i.e. G = H1 ] · · · ]Hk. Let G∗ be a graph with a vertex set [k] where (i, j) ∈ E(G∗)
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iff there is an edge in G between Hi and Hj . Then if G∗ is a tree and each Hi can be embedded
canonically with no stretch, all of G can be embedded canonically with no stretch.

It is easily seen, for example, that graphs that can be decomposed into lines and cycles succumb
to the same embedding procedure. The canonical embedding of a cycle is illustrated in Figure 3.
More complicated examples can be derived by using higher hyperbolic dimension and/or a cleverer
arrangement of the canonical embeddings from lower levels of the recursion. The limitation of this
technique, however, is that it is inherently recursive and therefore it applies to graphs that at large
scale look like trees.

6. Low dimensional Euclidean embeddings of trees

Inspired by ideas from [3], in this section we construct low dimensional greedy embeddings of
trees into Euclidean spaces. Note that our construction is somewhat different than Gupta’s and
surprisingly it does not require the use of a hierarchical path decomposition to accomplish concise-
ness.

Theorem 6.1. Every tree T on n vertices has a concise greedy embedding in `
O(log n)
2 with O(log2 n)-

bit vertex coordinates.

Sketch of Construction: We begin by picking an arbitrary root v0 for T . Using the Johnson-
Lindenstrauss lemma, or alternatively using sphere packing constructions as in [3, 31], we obtain
a bundle B of n − 1 unit vectors such that (a) each vector has positive 1-st coordinate; (b) the
angle between any two vectors is a constant slightly larger than π/3, say π/3 + π/180; and (c) B is
realized in `

O(log n)
2 .

The embedding algorithm assigns a vector g(v, w) ∈ B to each edge (v, w) ∈ T in a manner to be
specified shortly. The embedding f : V (T ) → `2 is then defined as f(v) = g(v0, v1)+ · · ·+g(vk−1, v),
where v0, v1, . . . , vk−1, v is the path from v0 to v in T . The matching g : E(T ) → B is chosen as
follows. For vertex v ∈ T let g̃(v) = {g(u,w) ∈ B : (u,w) ∈ subtree(v)}. Then g(·, ·) is such that for
every v ∈ T and all pairs of children va and vb of v it holds that Cone

(
g̃(va)

) ∩ Cone
(
g̃(vb)

)
= {0}.

Such a matching exists and can be found algorithmically using the sweeping-hyperplane method
of [3].

The correctness of this construction is sketched in Appendix C. z

7. Open Problems and Closing Remarks

An abundance of open problems arises from the notion of greedy embeddings and their applica-
tions. We only mention two.

The main open problem is that of finding no-stretch greedy embeddings of any graph into `
O(log n)
2 .

We shortly describe a promising strategy for attacking this problem, which we have not yet investi-
gated thoroughly. Let Yp,q,r be the graph consisting of edge-disjoint copies of Lp, Lq and Lr (where
Ll is the undirected line graph on l edges), exactly one of each, where also all three line subgraphs
share a starting vertex and a (different) ending vertex. Let a gadget be a procedure for embedding
Yp,q,r into `

O(1)
2 for any p, q and r. We believe that using such a gadget in conjunction with dimen-

sionality reduction, can lead to the desired embeddings of arbitrary graphs. Our intuition is based
on the following lemma (proof deferred to full version):

Lemma 7.1. Every unweighted undirected graph can be decomposed into a collection of (not
necessarily disjoint) sub-trees and (irreducible) sub-cycles such that (i) the shortest paths between
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vertices on a sub-cycle lie entirely in the sub-cycle, and (ii) the intersection of any two sub-cycles
is a connected arc, a vertex, or the empty set.

In view of applications, one other particularly important question concerns the existence of al-
gorithms for finding greedy embeddings in Peleg’s message-passing model of distributed network
computation [32], where message-cost (in addition to time) is of central importance. Furthermore,
algorithms with good incremental properties and resilience to small changes in the input graph are
desired.
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Figure 3. An illustration of the canonical embedding of a cycle.

A. Inappicability of standard techniques

Finding low-dimensional greedy embeddings into `2 is hard: In this section we explain that stan-
dard dimensionality reduction techniques alone are of no use for constructing greedy embeddings.
When seeking low-dimensional Euclidean embeddings it is common to use one of the following two
approaches:

• The Bourgain approach: Find an embedding into an arbitrary metric that realizes the re-
quired embedding properties. Then squeeze this embedding into `

O(log n)
2 using Bourgain’s

O(log n)-distortion embedding, while “making sure that the necessary embedding properties
are preserved.” Alternatively,

• The Johnson-Lindenstrauss approach: Find an embedding into `2 (of arbitrary dimension)
that realizes the required embedding properties. Then reduce the dimension using Johnson-
Lindenstrauss Flattening Lemma, while again “making sure that the necessary embedding
properties are preserved.”

In the case of greedy embeddings “making sure that the necessary embedding properties are pre-
served” boils down to requiring that pairwise distances whose relative magnitudes must be preserved
by the embedding have a sufficiently large margin ε. The minimum margins are ε = O(log n) and
ε = 1/ logO(1) n, respectively, for the above two approaches.

We are going to show that neither of these requirements are achievable for almost any graph G.
Start with two technical observations:

Lemma A.1. Let s = v1, v2, . . . , vk+1 = t be the unique shortest path between s and t in a graph
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G. Let f : (G, dG) → (X, dX) be a no-stretch greedy embedding with margin ε, and also let
xi = dX(f(vi), f(vi+1)). Then x1 + · · ·+ xk ≥ (1 + ε)k−1 ·max {x1, . . . , xk}

Sketch of Proof: The margin requirement says that for any three vertices u, v and w such that u and
v are adjacent and v is on the unique shortest path from u to w, it must hold that dX(f(u), f(w)) >
(1 + ε)dX(f(v), f(w)). Observe that for any 1 ≤ i < j ≤ k the unique shortest-path between vi and
vj is vi, vi+1, . . . , vj . Now the lemma follows by induction. z

Corollary A.1. Using the setup from the previous lemma, the following must hold k ≥ (1 + ε)k−1

Proof. Let xmax = max {x1, . . . , xk}, then simply: k · xmax ≥ x1 + · · ·+ xk ≥ (1 + ε)k−1 · xmax. z

When we substitute for the margin ε in the above corollary we get:

Corollary A.2. No graph that has a unique shortest path of length O(1), respectively logO(1) n,
can be greedily embedded in `

polylog(n)
2 using the Bourgain approach, respectively the Johnson-

Lindenstrauss approach.

In other words, both approaches are futile for almost every graph, and in particular for nice
classes of graphs like trees, cycles, random graphs, etc.

B Proof of lower bound

B.1 Dual Representation

Let G = (V, E) be a graph and let f : V → (X, ‖ · ‖) be an embedding, where (X, ‖ · ‖) is one of
`d
2 or Hd and d is referred to as the dimension of X. The conditions for f being a no-stretch greedy

embedding of G are described by a collection of inequalities, heretofore called greedy constraints, of
the form:

‖f(x)− f(z)‖ < ‖f(y)− f(z)‖ (B.1)

where x, y, z ∈ V are pairwise unequal. When the host metric is Euclidean or Lobachevsky, we
can rephrase the constraints using the language of hyperplanes. We shall use the notation (a c|d b),
where a, b, c and d are points in the host metric space, to mean that the bisecting hyperplane of
[c, d] separates a, c and b, d. More generally, in this notation we allow arbitrary lists (including the
empty list) of points in place of a or b. Furthermore, we abuse notation a little by using v to refer
both to a vertex v ∈ V and its image f(v). It is now easily seen that the constraint (B.1) can be
rewritten in the form (z x|y). (The hyperbolic case follows from Lemma 3.1.)

B.2 Proof Outline

The idea of the proof is to examine the constraints ofQd and show that when X is low-dimensional
there is no configuration of points and any hyperplanes that satisfy the constraints. What makes
this proof manageable is that we seek to realize the greedy constraints using arbitrary hyperplanes,
rather than strictly bisecting ones. In order to unify our analysis of the normed and Lobachevsky
cases, we make the following observation. In the Klein model of Hd, the hyperbolic hyperplanes
correspond to Euclidean hyperplanes restricted to the unit disc Dd = {x ∈ Rd : ‖x‖ < 1} in Rd.
Therefore for both types of geometries it suffices to show that the hyperplane/point configurations
required by Qd cannot be realized in `d′

2 with d′ < d. This will be established using simple Linear
Algebra.
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B.3 Linear Algebra and Point/Hyperplane Configurations

We shall only concern ourselves now with Euclidean geometry. If M is a matrix, we will let mi,
Mj and Mi,j refer to the i-th row, j-th column and the (i, j)-th entry of M , respectively.

A (point/hyperplane) configuration Ψ is a collection of points V1, . . . , Vn ∈ Rd and hyperplanes
(aT

1 , b1), . . . , (aT
k , bk) ∈ Rd×R, where a point Vj is on the “positive” side of (aT

i , bi) iff aiVj− bi > 0.
The left-hand side of the latter inequality is referred to as the polarity of Vj with respect to (aT

i , bi).
Let A ∈ Mk,d(R) be the matrix whose rows are a1, . . . , ak, V ∈ Md,n(R) be the matrix whose

columns are V1, . . . , Vn, and b ∈ Rk be the vector whose entries are b1, . . . , bk. Define the signature
of Ψ to be the matrix χ(Ψ) = AV − b · 1T , where 1T = (1, . . . , 1) ∈ Rd. Observe that χ(Ψ) has
a natural interpretation; in particular, sign(χ(Ψ)i,j) indicates the polarity of Vj with respect to
(aT

i , bi). Furthermore, χ(Ψ) can be interpreted as a configuration where the points are represented
by the columns of χ(Ψ) and the hyperplanes are the canonical Euclidean hyperplanes through the
origin, orthogonal to the unit vectors ei in the i-th direction. In that sense, χ(Ψ) is a “straighten-
out” version of Ψ which is more amenable to dimension analysis. In the rest of the proof, we will
make use of the following property of χ(Ψ):

Lemma B.1 (See Section C). For Ψ as above, dim
(
span(V1, . . . , Vn)

) ≥ rank
(
χ(Ψ)

)− 1.

For every greedy embedding of a graph G, we can can view the image of V (G) and the correspond-
ing bisecting hyperplanes between all pairs of points as a configuration. The greedy constraints will
impose certain sign-constraints on the entries of the signature of this configuration. In the case of
Qd, these sign-constraints will help us derive a lower bound on the rank of the signature and hence
on the dimensionality of the embedding.

B.4 The Constraints of Qd

It is easily checked that the following is a subset of the no-stretch greedy constraints of Qn,
involved along the routes from si, for i ∈ [2d], to tj , for j ∈ [d]. Let i = b1b2 · · · bd be the
binary representation of i and let π ∈ Sd be a permutation such that bπ(1) = · · · = bπ(q) = 0 and
bπ(q+1) = · · · = bπ(d) = 1 where 0 ≤ q ≤ d. The constraints are:

∀i ∈ [2d] (tπ(1), . . . , tπ(q)
wi,0 |wi,1 tπ(q+1), . . . , tπ(d)) (B.2)

Let Ψ be the configuration corresponding to a no-stretch greedy embedding of Qd. As noted earlier,
the rows of χ(Ψ) correspond to (and are indexed by) the bisecting hyperplanes, and the columns
correspond to (and are indexed by) the vertices of Qd. Let C ∈ M2d,d(R) be the sub-matrix
of χ(Ψ) defined by the hyperplanes (rows) that appear in (B.2) and the vertices {tj}j∈[d]. It is
clear that rank(χ(Ψ)) ≥ rank(C). Next, we are going to show that rank(C) = d. This will imply
rank(χ(Ψ)) ≥ d, and by Lemma B.1 we will get the desired lower bound d = Ω(log |V (Qd)|).

B.5 Rank of the signature

The constraints of (B.2) impose that the set of d-tuples
{
(sign(σ · Ci,1), sign(σ · Ci,2), . . . , sign(σ · Ci,d)) : i ∈ [2d], σ ∈ {−1,+1}}

contains all 2d sign patters on d slots. Then the following lemma (whose proof is found in Ap-
pendix C) implies that rank(C) = d:
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Lemma B.2. Let C ∈ M2d,d(R) be a matrix whose rows realize all 2d sign patterns over d columns,
then rank(C) = d.

C. Proofs and sketches thereof

Proof of Lemma B.1. Note that rank(b · 1T ) ∈ {0, 1}, then:

dim(span(V1, . . . , Vn)) = rank(V )
≥ rank(AV )

= rank(χ(Ψ) + b · 1T )

≥ | rank(χ(Ψ))− rank(b · 1T )|
≥ rank(χ(Ψ))− 1

z

Proof of Lemma B.2. Induct on d. The base case d = 1 is straightforward. Without loss of gen-
erality let C ∈ M2d,d(R) be such that sign(Ci,j) = sign(bi,j − 1/2), where bi,j is the j-th bit in the
binary representation of i. Let U be the sub-matrix of C consisting of the first 2d−1 rows. From
the induction hypothesis, U has rank d− 1. Let U ′ ∈ Md−1,d(R) be a diagonalized version of U . In
particular:

i. U ′
i,i+1 = 1 for i ∈ [d− 1],

ii. U ′
i,j+1 = 0 for i 6= j ∈ [d− 1], and

Pictorially:

U ′ =




U1,1 1 0 · · · 0

U2,1 0 1
...

...
...

. . . 0
Ud−1,1 0 · · · 0 1




By definition, C must have a row cl where l ∈ [2d]\[2d−1] such that:

i. sign(Cl,1) = +, and

ii. sign(Cl,j+1) = sign(−Uj,1) for all j ∈ [d− 1]; if Uj,1 = 0 then sign(Cl,j+1) can be arbitrary.

It is now easily verified that cl is linearly independent from all rows in U ′ thereby proving the
inductive step. z

Sketch of proof of Theorem 4.2. Given a greedy embedding f of G into `d
2, the set f(G) can be

embedded onto the d-dimensional unit sphere Sd ∈ Rd+1 such that the relative distance between
all pairs of points is preserved. Let g : V (G) → Sd be this embedding. The bisecting hyperplanes
between all pairs of points in g(G) in Rd+1 go through the origin. The disc 2Dd = {x ∈ Rd+1 :
‖x‖ < 2} together with g(G) inside it, can be interpreted as an embedding of G into Hd via the
Klein model. This is the required embedding. z
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Sketch of correctness for Theorem 6.1. For any v ∈ B the bisecting hyperplane of v separates v
from all other vectors in B. Using this, and the fact that any two vectors in B form an angle
of roughly π/3 + π/180, one can show correctness by induction. The induction is guided by the
“growing” process of creating the tree, similarly to the one in [3]. z
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